Glass - Back to the Future!



Presenting Author:
Vera Pukhkaya
<Vera.Pukhkaya@saint-gobain.com>

article posted 20 June 2016


VeraPukhkaya I am at a post-doc position in Saint-Gobain. I study plastic deformation of Na-aluminosilicate glasses under nano- and micro-indentation. The approach consists on impact of glass chemical composition on Young modulus and hardness. In plus, a method of permanent deformation visualization is being developed.

My Master diploma in Materials Science of Lomonosov Moscow State University was completed by PhD project in Ecole polytechnique. The experience includes synthesis of novel inorganic ceramic compositions, Rare Earth luminescent properties, irradiated silicate and phosphate glasses and glass mechanics.






Composition effect of Na-aluminosilicate glasses on its mechanical properties

V. Pukhkaya*1, J. Teisseire1, E. Burov1, Ch. Martinet2, V. Martinez2, B. Champagnon2, G. Kermouche3, E. Barthel4
1 Surface du Verre et Interface, Saint-Gobain Recherche, 93303, Aubervilliers, France
2 Institut Lumière Matière, UMR5306 CNRS, 69622, Villeurbanne, France
3 Ecole des Mines de Saint-Etienne, Science of Materials and Structures (SMS) Division, CNRS, 42023, Saint-Etienne, France >br> 4 Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI) ParisTech, PSL Research University, Sciences et Ingénierie de la Matière Molle CNRS UMR 7615, 10, Rue Vauquelin, F-75231 Paris Cedex 05, France


Plastic deformation of silicate glasses observed at glass surface is of strong interest today. In particular, we are looking for a composition impact on the deformation under indentation: densification in pure silica glass and shear bands in a float window glass. It was supposed that glass network depolymerization is the key answer in such a difference [1]. For a silica glass, the constitutive law had been developed [2] and the results of FEM simulations are in agreement with experimental Raman densification map [3].

In the present study, we work on a model system of Na-aluminosilicate (NAS) glasses with Na/Al ratio variation leading to controlled polymerization degree: 75% mol. of SiO2, 23-13% mol. of Na2O and 2-13% mol. of Al2O3. We study the detailed composition spectrum using glass diffusion approach. This technique allows us to follow precisely glass chemical composition by microprobe analysis, its structure by Raman spectroscopy and its mechanical properties (Young modulus and hardness) by nano-indentation. We show in this system the difference in Young moduli and hardness evolutions. The link to glass structure is followed. Glass polymerization being a major factor seems to be not the only reason in contrasted Young modulus evolution in our NAS glasses model system.

1. Sonneville C., De Ligny D., Mermet A., Champagnon B., Martinet Ch., Henderson GH, Deschamps T., Margueritat, J., Barthel E., In situ Brillouin study of sodium alumino silicate glasses under pressure, J. of Chem. Phys. 139, 074501, 2013
2. Kermouche G., Barthel E., Vandembroucq D., Dubujet P., Mechanical modelling of indentation induced densification of silica, Acta Materialia 56, 322-3228, 2008
3. Perriot A., Vandembroucq D., Barthel E., Martinez V., Grosvalet L., Martinet Ch., Champagnon B., Raman Microspectroscopic Characterization of Amorphous Silica Plastic Behavior, J. Am. Ceram. Soc. 89, 596-601, 2006